Asymptotic Behavior of Stochastic Complexity of Complete Bipartite Graph-Type Boltzmann Machines
نویسندگان
چکیده
In singular statistical models, it was shown that Bayes learning is effective. However, on Bayes learning, calculation containing the Bayes posterior distribution requires huge computational costs. To overcome the problem, mean field approximation (or equally variational Bayes method) was proposed. Recently, the generalization error and stochastic complexity in mean field approximation have been theoretically studied. In this paper, we treat the complete bipartite graph-type Boltzmann machines and derive the upper bound of the asymptotic stochastic complexity in mean field approximation.
منابع مشابه
Remainder Cordial Labeling of Graphs
In this paper we introduce remainder cordial labeling of graphs. Let $G$ be a $(p,q)$ graph. Let $f:V(G)rightarrow {1,2,...,p}$ be a $1-1$ map. For each edge $uv$ assign the label $r$ where $r$ is the remainder when $f(u)$ is divided by $f(v)$ or $f(v)$ is divided by $f(u)$ according as $f(u)geq f(v)$ or $f(v)geq f(u)$. The function$f$ is called a remainder cordial labeling of $G$ if $left| e_{...
متن کاملResolution of Singularities and Stochastic Complexity of Complete Bipartite Graph-Type Spin Model in Bayesian Estimation
In this paper, we obtain the main term of the average stochastic complexity for certain complete bipartite graph-type spin models in Bayesian estimation. We study the Kullback function of the spin model by using a new method of eigenvalue analysis first and use a recursive blowing up process for obtaining the maximum pole of the zeta function which is defined by using the Kullback function. The...
متن کاملBalanced Degree-Magic Labelings of Complete Bipartite Graphs under Binary Operations
A graph is called supermagic if there is a labeling of edges where the edges are labeled with consecutive distinct positive integers such that the sum of the labels of all edges incident with any vertex is constant. A graph G is called degree-magic if there is a labeling of the edges by integers 1, 2, ..., |E(G)| such that the sum of the labels of the edges incident with any vertex v is equal t...
متن کاملMixed cycle-E-super magic decomposition of complete bipartite graphs
An H-magic labeling in a H-decomposable graph G is a bijection f : V (G) ∪ E(G) → {1, 2, ..., p + q} such that for every copy H in the decomposition, ΣνεV(H) f(v) + ΣeεE(H) f(e) is constant. f is said to be H-E-super magic if f(E(G)) = {1, 2, · · · , q}. A family of subgraphs H1,H2, · · · ,Hh of G is a mixed cycle-decomposition of G if every subgraph Hi is isomorphic to some cycle Ck, for k ≥ ...
متن کاملMixed cycle-E-super magic decomposition of complete bipartite graphs
An H-magic labeling in a H-decomposable graph G is a bijection f : V (G) ∪ E(G) → {1, 2, ..., p + q} such that for every copy H in the decomposition, ∑νεV (H) f(v) + ∑νεE (H) f(e) is constant. f is said to be H-E-super magic if f(E(G)) = {1, 2, · · · , q}. A family of subgraphs H1,H2, · · · ,Hh of G is a mixed cycle-decomposition of G if every subgraph Hi is isomorphic to some cycle Ck, for k ≥...
متن کامل